Advanced AI algorithms analyze, predict, and optimize your social media strategy with 92.7% accuracy in engagement forecasting.
Socius AI leverages advanced machine learning models to predict and optimize every aspect of your social strategy.
Our temporal analysis algorithms identify the perfect posting schedule down to the minute.
Predictive models estimate engagement metrics before you post with 92.7% accuracy.
Continuous A/B testing and reinforcement learning to refine your strategy.
Built on cutting-edge machine learning models trained on billions of social interactions.
Predicts optimal posting times with 89% accuracy
Content performance forecasting model
Continuous strategy optimization engine
# Socius AI Core Prediction Algorithm
import tensorflow as tf
from transformers import TFAutoModelForSequenceClassification
class SociusPredictor:
def __init__(self):
self.temporal_model = tf.keras.models.load_model('temporal_nn.h5')
self.content_model = TFAutoModelForSequenceClassification.from_pretrained('socius-content-bert')
self.optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
def predict_engagement(self, content, timing_features):
"""Predict engagement score for content at given time"""
# Temporal features analysis
time_score = self.temporal_model.predict(timing_features)
# Content features analysis
content_inputs = self._preprocess_content(content)
content_score = self.content_model(content_inputs).logits
# Combined prediction
combined = 0.6 * content_score + 0.4 * time_score
return combined * 100 # Convert to percentage
def optimize_schedule(self, content_batch, time_window):
"""Find optimal posting time within window"""
time_points = np.linspace(time_window[0], time_window[1], 1440)
predictions = [self.predict_engagement(content_batch, t) for t in time_points]
optimal_idx = np.argmax(predictions)
return time_points[optimal_idx], predictions[optimal_idx]
def _preprocess_content(self, content):
# NLP preprocessing pipeline
return tokenizer(content, return_tensors='tf', truncation=True, padding=True)
# Initialize predictor
predictor = SociusPredictor()
# Example prediction
content = "New AI breakthrough in social media optimization..."
timing_features = get_current_timing_features()
score = predictor.predict_engagement(content, timing_features)
print(f"Predicted engagement: {score:.1f}%")
Scale your social media strategy with our flexible, results-driven pricing.
Join 850+ marketing teams using Socius AI to predict and maximize their social media performance.